Review of MCS v2.0 Web Services Implementation

Submitted by
Archie Warnock (warnock@awcubed.com)
A/WWW Enterprises
June 11, 2004

Introduction

This document describes evaluation and testing of the MCS v2.0 web services implementation with specific attention to the new (since v1.0) capabilities for performing spatial searches. The software was tested on a 300 MHz Pentium machine, with 192 megs of RAM and 512 megs of swap space running RedHat Linux 9.0. All necessary software for the test was installed from the distribution RPM or tar files, as necessary.

Review of Installation Requirements

MCS (Metadata Catalog Service) is a Web Services interface for managing metadata catalogs. Version 2.0 of the MCS package includes functions for interfacing to the spatial capabilities of MySQL v4.1.0-alpha and higher. It includes functions for adding spatial attributes to the stored catalog information and for submitting spatial queries to the database via Web Services.

MCS requires a heavyweight, albeit fairly typical, operating environment. In addition to the v4.1 alpha release of MySQL (note that v4.0 is the current production release), it requires the Apache web server, as well as the Tomcat (servlet container package, part of the Apache Jakarta project) and Apache-Axis (for Java Web services) utilities. While installation of those components is relatively straightforward, it may require (at least one-time) root access in order to create necessary directories, modify the Tomcat configuration files and to install the MCS services as part of the Axis system. . The Tomcat implementation runs, by default, on a non-privileged port (8080), so running the application via Tomcat does not require root access.

Once those are installed, there is some configuration required to build the MySQL database schema. A script (mcsschema.txt) for creating the schema is included in the distribution. Once the account and related privileges are set correctly, creating the database only requires a single command:

$ mysql -u username -ppassword < mcsschema.txt

Successful installation of MCS is also highly dependent on getting the protections for MySQL configured correctly. The error messages from the command-line utilities resulting from MySQL protection problems are not particularly useful. Installation of MCS should probably not to be undertaken without system-level and database administration experience or support.

Once the MCS software is installed and configured within Tomcat and Axis and the database schema is created, the metadata catalog must be populated with the relevant elements. There are command-line utilities that can be used for creating collection, logical files and views and for adding attributes, but the job of parsing actual metadata records, extracting relevant data and building the commands to actually insert the data in to the database are left as exercises to the user. The command-line utilities can be incorporated into shell scripts, though.

Review of MCS v2.0 Web Services Spatial Capabilities

After getting the catalog metadata loaded, functionality can be tested via the command-line utilities or via the JAVA-based client API, which could be integrated into a full-blown query servlet.

Since the MySQL spatial implementation doesn't support handling arbitrary polygons, MCS calculates the Minimal Bounding Rectangle (mbr) for spatial structures. This results in less precision but is required to match the underlying database capabilities. The syntax for querying spatial structures in MCS is not compliant with any existing standards, for example, those derived from OGC Web Feature Services, but a transformation layer would be possible to implement.

The MCS services support the standard spatial relations used for comparing spatial structures:

· mbrcontains – to test if the mbr of an attribute contains the mbr of a user-specified geometry

· mbrtouches – to test if the mbr of an attribute touches the mbr of a user-specified geometry

· mbrwithin – to test if the mbr of an attribute lies within the mbr of a user-specified geometry

· mbrdisjoint – to test if the mbr of an attribute is disjoint from the mbr of a user-specified geometry

· mbrequal – to test if the mbr of an attribute is equal to the mbr of a user-specified geometry

· mbrintersects – to test if the mbr of an attribute intersects the mbr of a user-specifed geometry

· mbroverlaps – to test if the mbr of an attribute overlaps the mbr of a user specifed geometry.

Spatial data may be stored in attributes as one of three data structures – point (referenced as "Point"), simple polygons (referenced as "Linestring"), and outer-and-inner polygons (referenced as "Polygon"). Spatial relations appear (in some cases, at least) to be specific to the various relationships between points and polygons.

Note that care must be taken to be consistent with the attribute naming, as queries are posed against specific attributes. In order to construct useful queries, users must know the attribute names for each instance – there is no abstraction layer provided as, for example, in Z39.50 to provide semantic equivalence. If some Linestring attributes are called Line1 and others are called, say, Bounding, two queries will be required to query each of them. As a result, it will be necessary within the CEOS community to construct a set of conventions for attribute names and types to enforce consistency across multiple sites, as this is not enforced at the protocol level.

As an example, an attribute can be added to a logical file of a collection with the command add_att, using the command line:

> add_att -l EDC_GLOBAL_30-ARC-SECOND_ELEVATION_DATA_SET Line1 spatial \
> "Linestring(90.00 -180.00, 90.00 -140.00, 40.00 -140.00, 40.00 -180.00)"

Here, the logical file is named EDC_GLOBAL_30-ARC-SECOND_ELEVATION_DATA_SET (one of the metadata records for a data collection held at EDC). The attribute to be saved will be named Line1, it is a spatial attribute of type Linestring, with the four bounding coordinates as specified. If one wanted to search all of the records to find the logical files in which the Linestring attribute Line1 contains the point with latitude 50 deg. and longitude -160 degrees, this command line query:

../mcs/bin/query -l Line1 spatial mbrcontains "Point(50.0 -160.0)"

would return the logical file name. Here, the -l parameter directs the query against logical files (all of them, apparently), Line1 is the name of the attribute to query against, the attribute Line1 is declared to be of type spatial and the relation to be tested is mbrcontains - that is, search for all MBRs in the collection which contain the specified point. However, the query:

> ../mcs/bin/query -l Line1 spatial mbrcontains \
> "Linestring(60.0 -160.0, 60.0 –150.0,50.0 –160.0,50.0 –150.0)"

failed to execute, presumably because the relation mbrcontains cannot be used to compare two Linestring objects.

The query command requires that the attribute type be specifically given. This imposes a burden on the end user to know the attribute types in the database, rather than shielding the underlying schema from the user. While this issue can be avoided by designing the user interface appropriately, in other circumstances it has the potential to lead to failed queries because of mismatched attribute types. Users should be shielded from the details of the underlying database schema – this should be explicitly stated as a requirement.

Further note that using mbroverlaps instead of mbrcontains does not work correctly in this query, apparently because the user-specified geometry is a point, not a region, nor will any matching single-point data be returned. The latter would require the additional query:

../mcs/bin/query -l Point1 spatial mbrequals "Point(50.0 -160.0)"

assuming the attribute is called Point1. Thus, users need to know that some records contain point data and some contain a polygonal data, and must construct queries accordingly.

The command-line query program also allows one to direct queries against collections, logical files or views. That is

../mcs/bin/query -c Line1 spatial mbrcontains "Point(50.0 -160.0)"

only will return results if the collections have attributes named Line1. In practical terms, collection footprints have to be computed manually and added at ingest time.

Searches against all of the logical files within a collection, for example, are implemented using the program query_file, in which one builds the query attributes in a text file, but can direct the query against logical files in a collection or view.

Search performance is sluggish, but that may be due to MySQL's spatial capabilities, rather than the overhead of the MCS and Apache web services implementation. On the test machine, the spatial search above took 8.5 seconds (wall-clock time). A similar search using the Isearch text-search engine in Isite, adapted for spatial searching for the FGDC would take a fraction of a second, but lacks the web services interface.

Additional User Comments

Aijun Chen and Li Ping Di note that the main advantages of the MCS v1.0 and v2.0 for their purposes are that, as it is based on the Globus Replica Location Service (RLS) and Globus Security Infrastructure (GSI), they could use the Globus functions for data replica management and security authentication.

The main problem they encountered on MCS 1.0/2.0 was in extending the specific complex domain metadata, i.e., ISO 19115 metadata and the WRS complex information model, into the MCS model. MCS only supports simple attributes and does not provide a mechanism to represent, for example, the Registry Object and the relationships among them. Figure 1 (from Aijun Chen’s comments) illustrates this. Chen and Di have designed and implemented the OGC CSW and ISO 19115 and ISO 19119 models directly, based on MySQL, as a web service. It thereby will conform to the Grid service specifications and they can directly extend this web service. They feel that OGC CSW and MCS are two different approaches but that for their purposes, the OGC CSW approach would be better choice.

Chen and Di summarize their findings on MCS as:

1. Extension only for simple attribute, can not process the complex attributes.

2. Can not express the complex objects and the relationships among them.

3. No service and relation to dataset.

4. Query conditions are very simple, e.g. query syntax supports only “AND”, and not “OR”.

5. Does not support the string wildcard match.

6. MCS 1.0 lacks of the spatial query predicates. MCS 2.0 add some spatial predicates.

Summary

In summary, the MCS toolkit implements a Web Services interface to the spatial capabilities of MySQL v4.1-alpha and provides both a JAVA-based client API and a set of command-line programs for manipulating catalog collections, logical files (records) within the collections and the various attributes therein. Installation is involved for sites not already familiar with MySQL administration, the Jakarta toolkit and Apache extensions, but is relatively straightforward. Programming is required to insert the catalog contents into the database – no data parsers are included. Search syntax is non-standard, which requires additional programming to implement interoperability with standards-compliant sites, but is functional and matches well to the spatial capabilities of MySQL v4.1. Performance is unimpressive but functional.

For further information on MCS, see http://gaul.isi.edu/mcs/ or http://www.isi.edu/~deelman/MCS (which currently seems to be down).

Recommendations

Some of these recommendations may reflect changes in the original requirements for the MCS spatial capabilities, but have been identified as a result of hands-on testing. They are intended to provide a roadmap to wider utility within the CEOS community and may require additional development and should not be viewed as critical of the current implementation. They are offered simply as observations derived from actual use.

For maximum utility to the geospatial community, the MCS Web Services software developers should be asked to:

1. Develop an abstract schema model which will allow the MCS Web Services interface to be used against existing database schemas

2. Develop a scripting capability, using an abstract schema mapping into a user-specified schema using the MCS Web Services interface to allow simplified metadata parsing and ingest for existing XML metadata records.

3. Develop an enhancements to the MCS Information Model to permit more complex metadata relationships and structures such as those found in ISO 19115.

4. Bring the query syntax into compliance with existing semantic and syntactic models like those developed by the OGC, either by modification of the query syntax of the MCS interface directly or by development of a translation layer, which would accept standards-based queries and translate them into usable requests for the MCS Web Services.

5. Develop query construction capabilities which will shield the end user from needing to know the underlying spatial data structures used in the database. That is, users should not have to submit separate queries to search points and polygons.

6. Improve MySQL database creation (or instructions) so that required protections will be set correctly.

7. Improve error reporting from command-line tools (for example, so that problems related to database privilege issues are reported as such).

8. Implement a full set of Boolean query relations and wildcard/truncation syntax.

9. Implement support for spatial functions in other relations databases like PostgreSQL.

Acknowledgements

Special thanks to Ananth Rao for providing data and data ingest scripts. Aijun Chen and Gurmeet Singh provided useful comments and these have been reflected in the text.

Globus GSI

Fig. 1 Relationships among different Metadata information model

(IM: Information Model)

CSW IM

ISO 19115 Metadata IM

MCS IM

Globus RLS IM

